
The Internet Is Physical
Not a "Cloud": The internet is a network of physical wires (fiber optics, 
copper, etc.) buried underground or transmitted via satellites/cell towers.

Servers vs. Clients:

Servers: Directly connected to the internet, store data (e.g., websites), and 
have unique IP addresses (e.g.,  72.14.205.100 ).

Clients: Devices (e.g., laptops, phones) connect indirectly via ISPs (e.g., 
DSL, dial-up).

 Communication Basics
Data as Packets: Information (emails, web pages) is split into smaller packets, 
sent across the internet, and reassembled at the destination.

IP Addresses: Unique identifiers for every device/server (like postal 
addresses). Names like  google.com  simplify complex IPs for humans.

How Data Travels
Routers: Direct packets between networks. Each router adds a "layer" (its IP) 
to packets, guiding them step-by-step to their destination.

Example: Visiting  aol.com  involves 10–15 routers to route packets.

Privacy: Routers use IP addresses to ensure packets reach the correct device 
(e.g., your laptop, not your boss’s).

Real-World Example
Sending an Email:

1. Compose in Gmail (client).

2. Gmail (server) breaks the email into packets.

3. Routers guide packets to Aunt Ruth’s AOL server.

4. Ruth retrieves the email via her ISP (dial-up).

Untitled 1



How the Web Works
Requesting a Web Page

When a user enters a URL in the browser, the browser contacts a DNS 
(Domain Name System) server to find the corresponding IP address of 
the website.

A request is then sent to the web server that hosts the site.

Server Response & Rendering

The web server processes the request and sends back a response, which 
can be a static page (pre-written content) or a dynamic page (generated 
on demand).

The response includes:

HTML – Defines the page structure.

CSS – Styles the page for better design.

JavaScript – Adds interactivity and dynamic features.

Protocols & Security

HTTP (Hypertext Transfer Protocol) governs communication between the 
browser and the server.

HTTPS encrypts the data to ensure security and privacy, preventing 
unauthorized access.

Web Technologies

Frontend: Uses HTML, CSS, and JavaScript to display and interact with 
content.

Backend: Uses languages like Node.js, PHP, and Python to process data 
and handle requests.

APIs (Application Programming Interfaces) allow websites and 
applications to exchange data, often using JSON (JavaScript Object 
Notation) format.

Untitled 2



Advanced Features

WebSockets enable real-time communication for applications like live chat 
and stock market updates.

Frameworks simplify development, improving efficiency and performance 
for both frontend and backend.

Client-Server Model & Peer-to-Peer Model
 What is the Client-Server Model?

The client-server model is a web architecture that divides computers into two 
roles:

Clients: Devices or programs that request services (e.g., web browsers, 
mobile apps).

Servers: Programs that provide requested services (e.g., web servers, 
database servers).

Communication happens through the request-response cycle, usually via 
HTTP.

How Servers Work

A server is a program (not just a powerful computer) that runs continuously to 
handle client requests.

One server can handle multiple clients simultaneously.

Types of servers:

Web servers (e.g., Apache, Nginx) serve websites.

Database servers (e.g., MySQL, PostgreSQL) store and manage data.

3. Peer-to-Peer (P2P) Model – The Alternative

In the peer-to-peer (P2P) model, there is no fixed client or server—every 
computer can send and receive data.

Untitled 3



This model is decentralized, unlike the client-server model, which is 
centralized.

Examples: BitTorrent, video chat applications.

. Key Differences

Feature Client-Server Model Peer-to-Peer Model

Structure Centralized Decentralized

Role of Devices Clients request, servers provide All devices act as both

Example Websites, cloud services File sharing, VoIP apps

HTTP Basics

Definition: HTTP is a stateless protocol for client-server communication. 
Each request is independent (no memory of prior interactions).

HTTPS: Secure version of HTTP using SSL/TLS encryption for sensitive 
data (e.g., passwords, payments).

HTTP Methods

GET: Fetch data (e.g., load a webpage, retrieve JSON).

POST: Submit data to create a resource (e.g., form submissions).

PUT: Update existing data on the server.

DELETE: Remove data from the server.

Request-Response Structure

Headers: Metadata sent with requests/responses (e.g.,  Content-Type ,  User-

Agent ,  Authorization ).

Body: Contains data (e.g., HTML, JSON) in responses or submitted data 
(e.g., form inputs) in requests.

HTTP Status Codes

2xx (Success):  200 OK ,  201 Created .

Untitled 4



3xx (Redirection):  301 Moved Permanently .

4xx (Client Errors):  400 Bad Request ,  401 Unauthorized ,  404 Not Found .

5xx (Server Errors):  500 Internal Server Error .

Headers Explained

Request Headers:  Cookie ,  Accept-Language ,  Content-Type ,  Authorization .

Response Headers:  Set-Cookie ,  Content-Type ,  Server .

Tools & Demonstrations

Postman: Test APIs by sending requests (GET, POST, etc.) and inspecting 
headers/body.

Express.js: Minimal Node.js framework to handle HTTP directly (e.g., 
routing, status codes, headers).

Example: Creating endpoints for GET/POST requests, validating tokens 
in headers, and sending JSON responses.

Tryhackme room :

    

Untitled 5



Untitled 6



Untitled 7



THB room :

   

Untitled 8



Untitled 9



Untitled 10



Untitled 11


